EXERCISES

1. Expand $(1 - z)^{-m}$, m a positive integer, in powers of z.

2. Expand $\frac{2z+3}{z+1}$ in powers of z-1. What is the radius of convergence?

3. Find the radius of convergence of the following power series:

$$\sum n^p z^n$$
, $\sum \frac{z^n}{n!}$, $\sum n! z^n$, $\sum q^{n^2} z^n (|q| < 1)$, $\sum z^{n^2}$

4. If $\sum a_n z^n$ has radius of convergence R, what is the radius of convergence of $\sum a_n z^{2n}$? of $\sum a_n^2 z^n$?

5. If $f(z) = \sum a_n z^n$, what is $\sum n^3 a_n z^n$?

6. If $\sum a_n z^n$ and $\sum b_n z^n$ have radii of convergence R_1 and R_2 , show that the radius of convergence of $\sum a_n b_n z^n$ is at least $R_1 R_2$.

7. If $\lim_{n\to\infty} |a_n|/|a_{n+1}| = R$, prove that $\sum a_n z^n$ has radius of convergence R.

8. For what values of z is

$$\sum_{0}^{\infty} \left(\frac{z}{1+z} \right)^{n}$$

convergent?

9. Same question for

$$\sum_{0}^{\infty} \frac{z^n}{1+z^{2n}}.$$

2.5. Abel's Limit Theorem. There is a second theorem of Abel's which refers to the case where a power series converges at a point of the circle of convergence. We lose no generality by assuming that R = 1 and that the convergence takes place at z = 1.

Theorem 3. If $\sum_{0}^{\infty} a_n$ converges, then $f(z) = \sum_{0}^{\infty} a_n z^n$ tends to f(1) as z approaches 1 in such a way that |1 - z|/(1 - |z|) remains bounded.

Remark. Geometrically, the condition means that z stays in an angle $<180^{\circ}$ with vertex 1, symmetrically to the part $(-\infty,1)$ of the real axis. It is customary to say that the approach takes place in a *Stolz angle*.

Proof. We may assume that $\sum_{0}^{\infty} a_{n} = 0$, for this can be attained by adding